Publicaciones
Revisa la lista completa en Pubmed
SNX5 promotes antigen presentation in B cells by dual regulation of actin and lysosomal dynamics
B cells rapidly adapt their endocytic pathway to promote the uptake and processing of extracellular antigens recognized through the B-cell receptor (BCR). The mechanisms coupling changes in endomembrane trafficking to the capacity of B cells to screen for antigens within lymphoid tissues remain unaddressed. We investigated the role of SNX5, a member of the sorting nexin family, which interacts with endocytic membranes to regulate vesicular trafficking and macropinocytosis. Our results show that in steady state, B cells form SNX5-rich protrusions at the plasma membrane, which dissipate upon interaction with soluble antigens, whereas B cells activated with immobilized antigens accumulate SNX5 at the immune synapse where it regulates actin-dependent spreading responses. B cells silenced for SNX5 exhibit enlarged lysosomes, which are not recruited to the synaptic membrane, decreasing their capacity to extract immobilized antigens. Overall, our findings reveal that SNX5 is critical for actin-dependent plasma membrane remodeling in B cells involved in antigen screening and immune synapse formation, as well as endolysosomal trafficking required to promote antigen extraction and presentation.
Exploring Neuroprotection against Radiation-Induced Brain Injury: A Review of Key Compounds
Brain radiation is a crucial tool in neuro-oncology for enhancing local tumor control, but it can lead to mild-to-profound and progressive impairments in cognitive function. Radiation-induced brain injury is a significant adverse effect of radiotherapy for cranioencephalic tumors, primarily caused by indirect cellular damage through the formation of free radicals. This results in late neurotoxicity manifesting as cognitive impairment due to free radical production. The aim of this review is to highlight the role of different substances, such as drugs used in the clinical setting and antioxidants such as ascorbate, in reducing the neurotoxicity associated with radiation-induced brain injury. Currently, there is mainly preclinical and clinical evidence supporting the benefit of these interventions, representing a cost-effective and straightforward neuroprotective strategy.
Histatins, proangiogenic molecules with therapeutic implications in regenerative medicine
Recent studies show that a group of salivary peptides, collectively known as histatins, are potent inducers of wound healing in both soft and hard tissues. Among these molecules, histatin-1 stands out for its ability to stimulate the repair of skin, oral mucosal, and osseous tissue. Remarkably, all these effects are associated with the capacity of histatin-1 to promote angiogenesis via inducing endothelial cell adhesion, migration, and signaling. These findings have opened new opportunities in the field of regenerative medicine, leading to an increasing number of articles and patents proposing therapeutic uses of histatin-1. However, this scenario raises a relevant concern regarding the appropriate use of these molecules, since, unlike the mode of action, little is known about the molecular mechanism by which they promote angiogenesis and wound healing. Recent studies shed light on the pharmacodynamics of histatin-1, by identifying the endothelial receptor that it binds and downstream signaling. This perspective will discuss current evidence on the role of histatins in wound healing and angiogenesis, emphasizing their impact on regenerative medicine.
Diverse impact of topography and cultivation location on the polyphenolic profiles and certain sensory attributes of 'País' heritage wines from the Maule dryland region (Chile)
Polyphenols are compounds that have traditionally been related to sensory properties of wines. The synthesis of these secondary metabolites can be influenced by numerous factors, including the edaphoclimatic conditions of the growing area of vines. In this study, the effect of topography and cultivation location on the chemical composition and sensory perception of wines was determined. Different vineyards cultivating the 'País' grape variety were selected. This variety is of great historical heritage relevance in collections of different wine-producing countries. Three vine growing areas from each of three localities of a dryland region of Chile displaying either "Hilly" (slope 18-20 %) or "Valley" (slope less than 9 %) topographies were selected. Resulting wines were analyzed chemically (spectrophotometry and HPLC-DAD) and sensorially (acceptability and CATA). A close relationship between edaphoclimatic conditions of the vine growing area and certain sensory properties of wines (color, mouthfeel but not aroma) was evidenced. By contrast, association between edaphoclimatic conditions of vine cultivation and the phenolic profile of the wine products was unclear. Furthermore, phenolic differences between the wines produced from vines grown at different topographical conditions were not significant.
The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment
The tumor microenvironment (TME) represents a dynamic network of cancer cells, stromal cells, immune mediators, and extracellular matrix components, crucial for cancer progression. Stress conditions such as oncogene activation, nutrient deprivation, and hypoxia disrupt the endoplasmic reticulum (ER), activating the unfolded protein response (UPR), the main adaptive mechanism to restore ER function. The UPR regulates cancer progression by engaging cell-autonomous and cell-non-autonomous mechanisms, reprogramming the stroma and promoting immune evasion, angiogenesis, and invasion. This review explores the role of UPR beyond cancer cells, focusing on how ER stress signaling reshapes the TME, supporting tumor growth. The therapeutic potential of targeting the UPR is also discussed.
The sodium/ascorbic acid co-transporter SVCT2 distributes in a striated membrane-enriched domain at the M-band level in slow-twitch skeletal muscle fibers
Vitamin C plays key roles in cellular homeostasis, functioning as a potent antioxidant and a positive regulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. SVCT2 is up-regulated during the early fusion of primary myoblasts and decreases during initial myotube growth, indicating the relevance of vitamin C uptake via SVCT2 for early skeletal muscle differentiation and fiber-type definition. However, our understanding of SVCT2 expression and function in adult skeletal muscles is still limited.
Translation and cultural adaptation of the Long Coronavirus Disease (COVID) Symptom and Impact Tools for the Chilean population
The Long Coronavirus Disease (COVID) Symptom and Impact Tools (ST and IT) were published in English in 2022 to monitor the symptoms and impact of persistent COVID-19. ST includes 53 symptoms selected by the patient. IT includes six aspects of life that the patient must rate from 1 to 10 points. We aim to report the results of the cultural adaptation of both instruments for the Chilean population, together with the content validity of the adapted instrument.
Molecular characterization of Fasciola hepatica obtained from cattle and horse in Central Chile
Liver fluke infection, caused by the trematode Fasciola hepatica, is a parasitic zoonotic disease affecting various mammals, including humans, and has significant implications for public, animal, and ecosystem health. This study provides the first genetic characterization of F. hepatica in Chile, focusing on the complete mitochondrial gene cox1. Samples were collected from two different host species: cattle and horses. Our findings revealed that 70 % of detected haplotypes were found in either cattle or horses, which coincides with their geographical origin. Interestingly, the use of full-length sequences resulted in the identification of 80 % unique sequences, whereas this reduced to 45 % when analyzing the traditionally used short sequences. This underestimation of genetic diversity suggests that broader sequencing efforts might be essential for a more accurate understanding of F. hepatica genetic landscape. This research underscores the importance of understanding the genetic variability in parasites to improve strategies for disease control and treatment.
Liver X receptor unlinks intestinal regeneration and tumorigenesis
Uncontrolled regeneration leads to neoplastic transformation. The intestinal epithelium requires precise regulation during continuous homeostatic and damage-induced tissue renewal to prevent neoplastic transformation, suggesting that pathways unlinking tumour growth from regenerative processes must exist. Here, by mining RNA-sequencing datasets from two intestinal damage models and using pharmacological, transcriptomics and genetic tools, we identified liver X receptor (LXR) pathway activation as a tissue adaptation to damage that reciprocally regulates intestinal regeneration and tumorigenesis. Using single-cell RNA sequencing, intestinal organoids, and gain- and loss-of-function experiments, we demonstrate that LXR activation in intestinal epithelial cells induces amphiregulin (Areg), enhancing regenerative responses. This response is coordinated by the LXR-ligand-producing enzyme CYP27A1, which was upregulated in damaged intestinal crypt niches. Deletion of Cyp27a1 impaired intestinal regeneration, which was rescued by exogenous LXR agonists. Notably, in tumour models, Cyp27a1 deficiency led to increased tumour growth, whereas LXR activation elicited anti-tumour responses dependent on adaptive immunity. Consistently, human colorectal cancer specimens exhibited reduced levels of CYP27A1, LXR target genes, and B and CD8 T cell gene signatures. We therefore identify an epithelial adaptation mechanism to damage, whereby LXR functions as a rheostat, promoting tissue repair while limiting tumorigenesis.
Genetic Contributions to Alzheimer's Disease and Frontotemporal Dementia in Admixed Latin American Populations
Latin America's diverse genetic makeup, shaped by centuries of admixture, presents a unique opportunity to study Alzheimer's disease dementia (AD) and frontotemporal dementia (FTD). Our aim is to identify genetic variations associated with AD and FTD within this population.
Intragastric administration of short chain fatty acids greatly reduces voluntary ethanol intake in rats
Alcohol use disorder (AUD) represents a public health crisis with few FDA-approved medications for its treatment. Growing evidence supports the key role of the bidirectional communication between the gut microbiota and the central nervous system (CNS) during the initiation and progression of alcohol use disorder. Among the different protective molecules that could mediate this communication, short chain fatty acids (SCFAs) have emerged as attractive candidates, since these gut microbiota-derived molecules have multi-target effects that could normalize several of the functional and structural parameters altered by chronic alcohol abuse. The present study, conducted in male alcohol-preferring UChB rats, shows that the initiation of voluntary ethanol intake was inhibited in 85% by the intragastric administration of a combination of SCFAs (acetate, propionate and butyrate) given before ethanol exposure, while SCFAs administration after two months of ethanol intake induced a 90% reduction in its consumption. These SCFAs therapeutic effects were associated with (1) a significant reduction of ethanol-induced intestinal inflammation and damage; (2) reduction of plasma lipopolysaccharide levels and hepatic inflammation; (3) reduction of ethanol-induced astrocyte and microglia activation; and (4) attenuation of the ethanol-induced gene expression changes within the nucleus accumbens. Finally, we determined that among the different SCFAs evaluated, butyrate was the most potent, reducing chronic ethanol intake in a dose-response manner. These findings support a key role of SCFAs, and especially butyrate, in regulating AUD, providing a simple, inexpensive, and safe approach as a preventive and intervention-based strategy to address this devastating disease.
Gestational hypoxia elicits long-term cardiovascular dysfunction in female guinea pigs
Gestational hypoxia (GH) has been implicated in the developmental programming of cardiovascular diseases (CVDs) in the offspring, with most studies focusing on males, conversely, the effects on female cardiovascular health remain understudied. We aimed to investigate the impact of GH on the cardiovascular system of female guinea pig offspring from the early postnatal period to adulthood.
High-fiber basil seed flour reduces insulin resistance and hepatic steatosis in high-fat diet mice
The incidence of insulin resistance (IR) and hepatic steatosis is increasing, with dietary fiber playing a protective role against these disorders. Ocimum basilicum L., widely used in food, pharmaceutical, and cosmetic industries, but their health-promoting properties remain underexplored. This study evaluated the effects of a fiber-rich fraction of partially defatted basil seeds (BSF) on IR, hepatic steatosis, and polyunsaturated fatty acid and short-chain fatty acid (SCFA) profiles in high-fat diet (HFD)-fed C57BL/6 J male mice. Mice were assigned to four groups and fed either a control diet or HFD, supplemented with BSF or oat flour for 4 weeks. HFD induced IR, hepatic steatosis, proinflammatory state, and a significant decreased in SCFA production. In contrast, supplementation with BSF attenuated IR, steatosis, liver damage, oxidative stress, and inflammation, while increasing n-3 polyunsaturated fatty acids in liver, adipocytes, and erythrocytes, and enhancing SCFA production, suggesting potential therapeutic benefits in managing these conditions.
Sex-Specific Metabolic Effects of Gestational Chronodisruption and Maternal Melatonin Supplementation in Rat Offspring
Gestational chronodisruption, increasingly common due to irregular light exposure, disrupts maternal-fetal circadian signaling, leading to long-term health issues in offspring. We utilized a chronic photoperiod shifting model (CPS) in pregnant rats to induce chronodisruption and investigated the potential mitigating effects of maternal melatonin supplementation (CPS + Mel). Male and female offspring were evaluated at 3 ages (90, 200, and 400 days of age) for metabolic profiles, hormonal responses, cytokine levels, and adipose tissue activity. Our findings indicate that gestational chronodisruption leads to increased birth weight by approximately 15% in male and female offspring and increased obesity prevalence in male offspring, accompanied by a 30% reduction in nocturnal melatonin levels and a significant disruption in corticosterone rhythms. Male CPS offspring also exhibited decreased lipolytic activity in white adipose tissue, with a 25% reduction in glycerol release compared to controls, indicating impaired metabolic flexibility. In contrast, female offspring, while less affected metabolically, showed a 25% increase in adipose tissue lipolytic activity and higher levels of pro-inflammatory cytokines such as IL-6 (increased by 40%). Scheduled melatonin supplementation in chronodisrupted mothers, administered throughout gestation, effectively normalized birth weights in both sexes, reduced obesity prevalence in males by 18%, and improved lipolytic activity in male offspring, bringing it closer to control levels. In females, melatonin supplementation moderated cytokine levels, reducing IL-6 by 35% and restoring IL-10 levels to near-control values. These results highlight the importance of sex-specific prenatal interventions, particularly the role of melatonin in preventing disruptions to fetal metabolic and inflammatory pathways caused by gestational chronodisruption. Melatonin treatment would prevent maternal circadian rhythm misalignment, thereby supporting healthy fetal development. This study opens new avenues for developing targeted prenatal care strategies that align maternal and fetal circadian rhythms, mitigating the long-term health risks associated with chronodisruption during pregnancy.
Cisplatin-resistance and aggressiveness are enhanced by a highly stable endothelin-converting enzyme-1c in lung cancer cells
Lung cancer constitutes the leading cause of cancer mortality. High levels of endothelin-1 (ET-1), its cognate receptor ETR and its activating enzyme, the endothelin-converting enzyme-1 (ECE-1), have been reported in several cancer types, including lung cancer. ECE-1 comprises four isoforms, which only differ in their cytoplasmic N-terminus. Protein kinase CK2 phosphorylates the N-terminus of isoform ECE-1c, increasing its stability and leading to enhanced invasiveness in glioblastoma and colorectal cancer cells, which is believed to be mediated by the amino acid residue Lys-6, a conserved putative ubiquitination site neighboring the CK2-phosphorylated residues Ser-18 and Ser-20. Whether Lys-6 is linked to the acquisition of a cancer stem cell (CSC)-like phenotype and aggressiveness in human non-small cell lung cancer (NSCLC) cells has not been studied.
Kinin Receptors B1 and B2 Mediate Breast Cancer Cell Migration and Invasion by Activating the FAK-Src Axis
Kinin receptors B1 and B2 are involved in migration and invasion in gastric, glioma, and cervical cancer cells, among others. However, the role of kinin receptors in breast cancer cells has been poorly studied. We aimed to reveal the impact of B1 and B2 receptors on migration and invasion in breast cancer cells and demonstrate their capacity to modulate in vivo tumor growth. MDA-MB-231, MCF-7, and T47D cells treated with Lys-des[Arg]bradykinin (LDBK) or bradykinin (BK) were used to evaluate migration and invasion. Des-[Arg]-Leu-BK and HOE-140 were used as antagonists for the B1 and B2 receptors. MDA-MB-231 cells incubated or not with antagonists were subcutaneously inoculated in BALBc NOD/SCID mice to evaluate tumor growth. LDBK and BK treatment significantly increased migration and invasion in breast cancer cells, effects that were negated when antagonists were used. The use of antagonists in vivo inhibited tumor growth. Moreover, the migration and invasion induced by kinins in breast cancer cells were inhibited when focal adhesion kinase (FAK) and Src inhibitors were used. The novelty revealed in our work is that B1 and B2 receptors activated by LDBK and BK induce migration and invasion in breast cancer cells via a mechanism that involves the FAK-Src signaling pathway, and the antagonism of both receptors in vivo impairs breast tumor growth.
Skeletal myotubes expressing ALS mutant SOD1 induce pathogenic changes, impair mitochondrial axonal transport, and trigger motoneuron death
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human mutant SOD1 (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal myotubes display intrinsic phenotypic and functional differences compared to control myotubes generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices rapidly reduces mitochondrial axonal transport while increasing Ca2 + transients and reactive oxygen species (i.e., HO). These results indicate that soluble factor(s) released by mutSOD1 myotubes cause MN axonopathy that leads to lethal pathogenic changes.
In Vitro Evaluation of New 5-Nitroindazolin-3-one Derivatives as Promising Agents against
Chagas disease is a prevalent health problem in Latin America which has received insufficient attention worldwide. Current treatments for this disease, benznidazole and nifurtimox, have limited efficacy and may cause side effects. A recent study proposed investigating a wide range of nitroindazole and indazolone derivatives as feasible treatments. Therefore, it is proposed that adding a nitro group at the 5-position of the indazole and indazolone structure could enhance trypanocidal activity by inducing oxidative stress through activation of the nitro group by NTRs (nitroreductases). The study results indicate that the nitro group advances free radical production, as confirmed by several analyses. Compound (5-nitro-2-picolyl-indazolin-3-one) shows the most favorable trypanocidal activity (1.1 ± 0.3 µM in epimastigotes and 5.4 ± 1.0 µM in trypomastigotes), with a selectivity index superior to nifurtimox. Analysis of the mechanism of action indicated that the nitro group at the 5-position of the indazole ring induces the generation of reactive oxygen species (ROS), which causes apoptosis in the parasites. Computational docking studies reveal how the compounds interact with critical residues of the NTR and FMNH (flavin mononucleotide reduced) in the binding site, which is also present in active ligands. The lipophilicity of the studied series was shown to influence their activity, and the nitro group was found to play a crucial role in generating free radicals. Further investigations are needed of derivatives with comparable lipophilic characteristics and the location of the nitro group in different positions of the base structure.
-derived exovesicles contribute to parasite infection, tissue damage, and apoptotic cell death during infection of human placental explants
, the causative agent of Chagas disease, can be congenitally transmitted by crossing the placental barrier. This study investigates the role of -derived exovesicles (TcEVs) in facilitating parasite infection and the consequent tissue damage and apoptotic cell death in human placental explants (HPEs). Our findings demonstrate that TcEVs significantly enhance the parasite load and induce tissue damage in HPEs, both in the presence and absence of the parasite. Through histopathological and immunohistochemical analyses, we show that TcEVs alone can disrupt the placental barrier, affecting the basal membrane and villous stroma. The induction of apoptotic cell death is evidenced by DNA fragmentation, caspase 8 and 3, and p18 fragment immunodetection. This damage is exacerbated when TcEVs are combined with infection. These findings suggest that TcEVs play a critical role in the pathogenesis of congenital Chagas disease by disrupting the placental barrier and facilitating parasite transmission to the fetus. This study provides new insights into the mechanisms of transplacental transmission of and highlights the potential of targeting TcEVs as a therapeutic strategy against congenital Chagas disease.
Morphine self-administration is inhibited by the antioxidant N-acetylcysteine and the anti-inflammatory ibudilast; an effect enhanced by their co-administration
The treatment of opioid addiction mainly involves the medical administration of methadone or other opioids, aimed at gradually reducing dependence and, consequently, the need for illicit opioid procurement. Thus, initiating opioid maintenance therapy with a lower level of dependence would be advantageous. There is compelling evidence indicating that opioids induce brain oxidative stress and associated glial activation, resulting in the dysregulation of glutamatergic homeostasis, which perpetuates drug intake. The present study aimed to determine whether inhibiting oxidative stress and/or neuroinflammation reduces morphine self-administration in an animal model of opioid dependence.